Jump to content

Search the Community

Showing results for tags 'ester'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • General Forums
    • General Automotive Chat
    • New Member Introductions!
    • Members Rides
    • Car Photoshoots
    • Motorsports
    • Event Coverage
  • Classifieds
    • Latest Parts from our Sponsors
    • Cars for Sale
    • Bikes for Sale
    • Parts for Sale
    • Stuff for Sale
    • Wanted to Buy
  • Sponsors Forums
    • Sponsor Forums
  • Technical & Support
    • Fabrication & Customisation
    • Car Audio & Electrical
    • Nissan Silvia (nissansilvia.com)
    • Nissan Skyline (skyline-gt.com)
    • Nissan GTR (gtroc.com)
    • Nissan 350z (350tuned.com)
    • Toyota (ttuned.com)
    • Mazda (mazdatuned.com)
    • Subaru (subituned.com.au)
    • Mitsubishi (evotuned.com)
    • Honda (hondatuned.com)
    • Euro (eurotuned.com.au)
    • 4WD Chat
    • Bikes
  • Lifestyle
    • General Off Topic Discussions
    • Sports Forum
    • Holidays & Travelling
    • Fitness Diet Bodybuilding
    • Tech & Gadgets
    • Computer & Video Games
    • Movies, Video & TV
    • Music
    • Girls ONLY chat
    • Jokes & Fun Stuff
    • Art, Graphics & Photography
    • Careers & Jobs
  • State forums
    • Australia - South Australia
    • Australia - Victoria
    • Australia - New South Wales
    • Australia - Queensland
    • Australia - Western Australia
    • Australia - ACT
    • Australia - Tasmania
    • Australia - Northern Territory


  • Show All
  • Australia - National
  • Australia - QLD
  • Australia - NSW
  • Australia - VIC
  • Australia - ACT
  • Australia - TAS
  • Australia - SA
  • Australia - WA
  • Australia - NT
  • New Zealand
  • Japan - Asia
  • United States & Canada
  • United Kingdom
  • Europe
  • International

Found 7 results

  1. What you want from a high performance racing oil? The modern engine designs of today need lubricants that can handle higher running temps to ensure viscosity consistency, while reducing consumption and oil film breakdown. Have you not noticed how modern engine run hotter? They are generally running 10-15deg C hotter or more when supercharged/ turbocharged. This is to improve combustion and reduce emissions. So how hot is hot when a car overheats? Enough to break down most oils and melt soft metal bearings, that’s how hot. Everyday oils are not able to handle excessive heat though and will reduce in viscosity by as much as 40% once it reaches 130 °C which means a 10w40 will perform like a 10w25. Motul’s high performance Ester synthetics are designed to handle higher temps without affecting the viscosity. High Performance engines always increase the load pressures placed upon moving components. High lift cams and stiffer valve springs load up the lifters, rocker arms and valve ends. Newer designs incorporate gear driven overhead cams which bring a new challenge. More internal gearing will shear the engine oil faster. High performance engines also need a balanced friction modifier package so that the ring seals stay strong, roller and ball bearings roll in the race and plain bearings have as little drag as possible. Because of this, Motul adds Extreme Pressure (EP) additives such as Zinc (ZDDP) and a STRONG EP additive, called a Sulfurized Ester to handle the shear/meshing of the engine. EP additives come into play at the instant an extreme pressure is applied and high temperatures are created. ZINC lays down a barrier that prevents metal to metal contact and the SULFURIZED ESTER produces a sacrificial film that is destroyed during very strong extreme pressures. The key advantage of Sulfurized Ester is that it prevents SEIZING. EP additives are generally corrosive especially those used in car gearboxes. The other advantage of Esters is that it is far less corrosive and more environmentally safe. Advertisements for oil products being tested with a ball bearing under 100,000 pounds of pressure fail to mention that most EP additives are corrosive. Performance engines used in endurance types of competition need strong ANTI-ACID (BASE, TBN, total base number). Condensation (the steam that you see coming out of your tail pipe in the morning) is a natural by-product of combustion in an engine. This condensation, which is acidic water, passes by the rings under compression into the crankcase and mixes with the sulphur, SULFURIC ACID is created. ANTI-ACID (Base) neutralizes the acid before it can cause any damage. E85 engines have it worse. E85 creates a greater acidic dilution than conventional ULP so look for a higher TBN is you run E85. High revving engines need strong Anti-Foam Additives. Higher RPMs aerates the oil more and bubbles will cause damage to your engine. Why? Foam is air; air will compress and also insulates. Air being compressed under load will separate oil and permit metal to metal contact. It also doesn’t transmit heat from hot metal parts to the oil very well or vice versa. Oil temp’s can rise due to inefficient heat exchange. Another major problem is oil pumps are not designed to pump air and your oil pressure will drop. Endurance engines need strong dispersants to suspend materials and combustion by-products which are created and rubbed off during normal operations. If you find worn components in your older race engine, ask yourself a question: Where did the material go? It has been compressed and the material is still there, just in a different place; or The materials were rubbed off and washed right into the oil! You want the material to stay in tiny pieces and stay mixed in the oil so that the oil filter can do its job. There are many devices on the market now that surround the filter with a magnet to capture some wear metals. Race engines need a strong detergent. With more heat generation (more horsepower per ci) trying to fry the oil onto the engine parts, carbon build-up and other by-products from combustion need to be washed away quickly so it doesn’t end up clogging the oil galleries. These are only some of the points Motul considers when designing high performance fluids. As discussed earlier, synthetics can handle much higher running temperatures than conventional petroleum oils and can withstand more stress. Many people ask, so what! I don’t push my vehicle that hard and I change oil every 3000kms. I don’t need expensive performance oil in my car. This type of thinking is wrong! Picture this; it’s a hot summer’s day and you are in peak hour traffic. For whatever reason, your car starts to get hot, real hot (Thermo fan stops working or a radiator hose breaks, whatever it may be). What oil would you like to have in your car? A mineral oil that acts like butter which burns up and evaporates very quickly, coking up your piston rings and lifters with carbon. Or Motul Synthetic/Ester oil that can handle super high RUNNING temps without the resulting damage (160°C to 190°C)? Motul High Performance Synthetic Ester oils are INSURANCE not just maintenance. The same is true about brake fluids and gear oils. Brake fluid only fails you when you need it the most – when braking! Same goes for engine oil. For further information regarding the Motul range, visit www.motul.com.au! Join us on FB https://www.facebook...323033041043007
  2. You may have heard over the years a lot of hype about Motul Oils. It might have seemed like a fad or passing faze to you at the time. You’re thinking it’s just another marketing spiel right?! 0% Shear Technology, Double Ester, Complex Ester, yeah, yeah, yeah. What can be so good about it? Well here’s a little known story from a user of Motul oils, GAS Motorsports. GAS Motorsports currently hold a number of world records including the Sport Compact record and fastest full bodied Toyota Supra. Their oil of choice: Motul 6100 Synergie. Not some secret formulation, but your standard, off the shelf 6100 15w50. The team had already had success using 6100 but here’s more of a reason why they would never use anything else other than Motul products. They have a new car in the team, the black Plumbmaster Scion. With an engine producing over 1600HP and gear shifts at 10,000RPM you get the idea that it would need the best engine oil for protection under this much stress. The car was still in the test’n’tune period in preparation for the Sydney Jamboree when it was being driven by Ben Bray at WSID in March 2012. After a few clean passes, the car was showing no signs of issues until the pass when it was paired with the GAS Motorsports Celica. A faint smoke trail followed the car from the 60ft line and got worse to the end. When the car got back to the pit area, the data logs were checked. It was every race team’s worst nightmare. Insufficient oil pressure for the majority of the run! A new car, a new engine and the last thing you want to go wrong is engine failure. The team was considering the possibility of having to replace the crank, all the bearings and con rods, adding up to excess of $15,000. See for yourself at the rotorg33k youtube channel: http://www.youtube.com/user/rotorg33k Have a look at the video titled: GAS 2JZ - Scion vs Celica Side by Side 650s - FLYBY! So, why did it lose oil pressure? The oil filter collapsed and restricted flow to the engine. Here’s is what it looked like when they removed it. With the oil pressure gauge showing as low as 0psi by the end of the pass, you can see that the filter would have been totally unforgiving to the oil supply by this time. Fearing the worst, the team pulled down the motor expecting to find all sorts internal damage. As they began to strip the engine they were astonished to find themselves having to search for damaged components. No signs of damage, not even a scratch or burr on the big end or main bearings! Now we’re talking a full power pass, 1600hp+ with little to no oil pressure and the only sign of failure is a collapsed oil filter. It’s unheard of! If you went to the Sydney Jamboree, you would have seen it back out there and competing with the same engine components still running the same consistent numbers! It really does go to show that Motul’s reputation is riding on its ability to protect your engine in cases just like this. Take it from the GAS Motorsports team, Motul protects your engine better than you’d ever expect. Countless cases like this prove that Motul is not expensive oil, its cheap insurance!
  3. Here is an intersting article regarding the different types of esters in engine oils. It was originally posted by Tom NJ on Bobtheoilguy.com ESTERS IN SYNTHETIC LUBRICANTS By T. G. Schaefer In the simplest terms, esters can be defined as the reaction products of acids and alcohols. Thousands of different kinds of esters are commercially produced for a broad range of applications. Within the realm of synthetic lubrication, a relatively small but still substantial family of esters have been found to be very useful in severe environment applications. This paper shall provide a general overview of the more common esters used in synthetic lubricants and discuss their important benefits and utilities. Esters have been used successfully in lubrication for more than 60 years and are the preferred stock in many severe applications where their benefits solve problems or bring value. For example, esters have been used exclusively in jet engine lubricants worldwide for over 50 years due to their unique combination of low temperature flowability with clean high temperature operation. Esters are also the preferred stock in the new synthetic refrigeration lubricants used with CFC replacement refrigerants. Here the combination of branching and polarity make the esters miscible with the HFC refrigerants and improves both low and high temperature performance characteristics. In automotive applications, the first qualified synthetic crankcase motor oils were based entirely on ester formulations and these products were quite successful when properly formulated. Esters have given way to PAOs in this application due to PAOs lower cost and their formulating similarities to mineral oil. Nevertheless, esters are often used in combination with PAOs in full synthetic motor oils in order to balance the effect on seals, solubilize additives, reduce volatility, and improve energy efficiency through higher lubricity. The percentage of ester used can vary anywhere from 5 to 25% depending upon the desired properties and the type of ester employed. The new frontier for esters is the industrial marketplace where the number of products, applications, and operating conditions is enormous. In many cases, the very same equipment which operates satisfactorily on mineral oil in one plant could benefit greatly from the use of an ester lubricant in another plant where the equipment is operated under more severe conditions. This is a marketplace where old problems or new challenges can arise at any time or any location. The high performance properties and custom design versatility of esters is ideally suited to solve these problems. Ester lubricants have already captured certain niches in the industrial market such as reciprocating air compressors and high temperature industrial oven chain lubricants. When one focuses on temperature extremes and their telltale signs such as smoking and deposits, the potential applications for the problem solving ester lubricants are virtually endless. Ester Chemistry In many ways esters are very similar to the more commonly known and used synthetic hydrocarbons or PAOs. Like PAOs, esters are synthesized from relatively pure and simple starting materials to produce predetermined molecular structures designed specifically for high performance lubrication. Both types of synthetic basestocks are primarily branched hydrocarbons which are thermally stable, have high viscosity indices, and lack the undesirable and unstable impurities found in conventional petroleum based oils. The primary structural difference between esters and PAOs is the presence of oxygen in the hydrocarbon molecules in the form of multiple ester linkages (COOR) which impart polarity to the molecules. This polarity affects the way esters behave as lubricants in the following ways: 1) Volatility: The polarity of the ester molecules causes them to be attracted to one another and this intermolecular attraction requires more energy (heat) for the esters to transfer from a liquid to a gaseous state. Therefore, at a given molecular weight or viscosity, the esters will exhibit a lower vapor pressure which translates into a higher flash point and a lower rate of evaporation for the lubricant. Generally speaking, the more ester linkages in a specific ester, the higher its flash point and the lower its volatility. 2) Lubricity: Polarity also causes the ester molecules to be attracted to positively charged metal surfaces. As a result, the molecules tend to line up on the metal surface creating a film which requires additional energy (load) to wipe them off. The result is a stronger film which translates into higher lubricity and lower energy consumption in lubricant applications. 3) Detergency/Dispersency: The polar nature of esters also makes them good solvents and dispersants. This allows the esters to solubilize or disperse oil degradation by-products which might otherwise be deposited as varnish or sludge, and translates into cleaner operation and improved additive solubility in the final lubricant. 4) Biodegradability: While stable against oxidative and thermal breakdown, the ester linkage provides a vulnerable site for microbes to begin their work of biodegrading the ester molecule. This translates into very high biodegradability rates for ester lubricants and allows more environmentally friendly products to be formulated. Another important difference between esters and PAOs is the incredible versatility in the design of ester molecules due to the high number of commercially available acids and alcohols from which to choose. For example, if one is seeking a 6 cSt synthetic basestock, the choices available with PAOs are a straight cut 6 cSt or a “dumbbell” blend of a lighter and heavier PAO. In either case, the properties of the resulting basestock are essentially the same. With esters, literally dozens of 6 cSt products can be designed each with a different chemical structure selected for the specific desired property. This allows the “ester engineer” to custom design the structure of the ester molecules to an optimized set of properties determined by the end customer or application. The performance properties that can be varied in ester design include viscosity, viscosity index, volatility, high temperature coking tendencies, biodegradability, lubricity, hydrolytic stability, additive solubility, and seal compatibility. As with any product, there are also downsides to esters. The most common concern when formulating with ester basestocks is compatibility with the elastomer material used in the seals. All esters will tend to swell and soften most elastomer seals however, the degree to which they do so can be controlled through proper selection. When seal swell is desirable, such as in balancing the seal shrinkage and hardening characteristics of PAOs, more polar esters should be used such as those with lower molecular weight and/or higher number of ester linkages. When used as the exclusive basestock, the ester should be designed for compatibility with seals or the seals should be changed to those types which are more compatible with esters. Another potential disadvantage with esters is their ability to react with water or hydrolyze under certain conditions. Generally this hydrolysis reaction requires the presence of water and heat with a relatively strong acid or base to catalyze the reaction. Since esters are usually used in very high temperature applications, high amounts of water are usually not present and hydrolysis is rarely a problem in actual use. Where the application environment may lead to hydrolysis, the ester structure can be altered to greatly improve its hydrolytic stability and additives can be selected to minimize any effects. The following is a discussion of the structures and features of the more common ester families used in synthetic lubrication. Diesters Diesters were the original ester structures introduced to synthetic lubricants during the second World War. These products are made by reacting monohydric alcohols with dibasic acids creating a molecule which may be linear, branched, or aromatic and with two ester groups. Diesters which are often abbreviated DBE (dibasic acid esters) are named after the type of dibasic acid used and are often abbreviated with letters. For example, a diester made by reacting isodecyl alcohol with adipic acid would be known as an “adipate” type diester and would be abbreviated “DIDA” (Diisodecyl Adipate). Listed below are the more common families of diesters used in synthetic lubricants, and the alcohols most commonly employed. Adipates are the most widely used diesters due to their low relative cost and good balance of properties. They generally range from about 2.3 to 5.3 cSt at 100°C and exhibit pour points below -60°C. The viscosity indices of adipates usually run from about 130 to 150 and their oxidative stability, like most of the diesters, are comparable to PAOs. The primary difference between adipate diesters and PAOs is the presence of two ester linkages and the associated polarity benefits outlined previously. The most common use of adipate diesters is in combination with PAOs in numerous applications such as screw compressor oils, gear and transmission oils, automotive crankcase oils, and hydraulic fluids. Adipates are also used as the sole basestock where biodegradability is desired or high temperature cleanliness is critical such as in textile lubricants and oven chain oils. Azelates, Sebacates, and Dodecanedioates are similar to adipates except that in each case the carbon chain length (backbone) of the dibasic acid is longer. This “backbone stretching” significantly increases viscosity index and improves the lubricity characteristics of the ester while retaining all the desirable properties of the adipates. The only downside to these types of diesters is price which tends to run about 50 - 100+% higher than adipates at the wholesale level. This group of linear DBEs are mainly used in older military specifications and where the lubricity factor becomes an important parameter. Phthalates are aromatic diesters and this ring structure greatly reduces the viscosity index (usually well below 100) and eliminates most of the biodegradability benefit. In all other respects, phthalates behave similar to other diesters and are about 20 - 30% lower in cost. Phthalates are used extensively in air compressor lubricants (especially the reciprocating type) where low viscosity index is the norm and low cost clean operation is desirable. Dimerates are made by combining two oleic acids which creates a large branched dibasic acid from which interesting diesters are made. Dimerates exhibit high viscosity and high viscosity indices while retaining excellent low temperature flow. Compared to adipates, dimerates are higher in price (30 - 40%), have marginal biodegradability, and are not as clean in high temperature operations. Their lubricity is good and they are often used in synthetic gear oils and 2-cycle oils. The alcohols used to make diesters will also affect the properties of the finished esters and thus are important factors in the design process. For example, three of the common alcohols used to make diesters each contain eight carbons, and when reacted with adipic acid, all create a dioctyl adipate. However, the properties are entirely different. The n-octyl adipate would have the highest viscosity and the highest viscosity index (about 50% higher then the 2-ethylhexyl adipate) but would exhibit a relatively high freeze point making their use in low temperature applications virtually impossible. By branching the octyl alcohol, the other two DOAs exhibit no freeze point tendencies and have pour points well below -60°C. The isooctyl adipate offers the best balance of properties combining a high viscosity index with a wide temperature range. The 2-ethylhexyl adipate has a VI about 45 units lower and a somewhat higher volatility. These examples demonstrate the importance of combining the right alcohols with the right acids when designing diester structures and allows the ester engineer a great deal of flexibility in his work. In addition, the alcohols may be reacted alone or blended with other alcohols to form coesters with their own unique properties. Polyol Esters The term “polyol esters” is short for neopentyl polyol esters which are made by reacting monobasic acids with polyhedric alcohols having a neopentyl structure. The unique feature of the structure of polyol ester molecules is the fact that there are no hydrogens on the beta-carbon. Since this “beta-hydrogen” is the first site of thermal attack on diesters, eliminating this site substantially elevates the thermal stability of polyol esters and allows them to be used at much higher temperatures. In addition, polyol esters usually have more ester groups than the diesters and this added polarity further reduces volatility and enhances the lubricity characteristics while retaining all the other desirable properties inherent with diesters. This makes polyol esters ideally suited for the higher temperature applications where the performance of diesters and PAOs begin to fade. Like diesters, many different acids and alcohols are available for manufacturing polyol esters and indeed an even greater number of permutations are possible due to the multiple ester linkages. Unlike diesters, polyol esters (POEs) are named after the alcohol instead of the acid and the acids are often represented by their carbon chain length. For example, a polyol ester made by reacting a mixture of nC8 and nC10 fatty acids with trimethylolpropane alcohol would be referred to as a “TMP” ester and represented as TMP C8C10. The following is a list of the more common types of polyol esters: Neopentyl Glycols (NPGs) - 2 Hydroxyls Trimethylolpropanes (TMPs) - 3 Hydroxyls Pentaerythritols (PEs) - 4 Hydroxyls DiPentaerythritols (DiPEs) - 6 Hydroxyls Each of the alcohols shown above have no beta-hydrogens and differ primarily in the number of hydroxyl groups they contain for reaction with the fatty acids. The difference in ester properties as they relate to the alcohols are primarily those related to molecular weight such as viscosity, pour point, flash point, and volatility. The versatility in designing these fluids is primarily related to the selection and mix of the acids esterified onto the alcohols. The normal or linear acids all contribute similar performance properties with the physicals being influenced by their carbon chain length or molecular weight. For example, lighter acids such as C5 may be desirable for reducing low temperature viscosity on the higher alcohols, or the same purpose can be achieved by esterifying longer acids (C10) onto the shorter alcohols. While the properties of the normal acids are mainly related to the chain length, there are some more subtle differences among them which can allow the formulator to vary such properties as thermal stability and lubricity. Branched acids add a new dimension since the length, location, and number of branches all impact the performance of the final ester. For example, a branch incorporated near the acid group may help to hinder hydrolysis while multiple branches may be useful for building viscosity, improving low temperature flow, and enhancing thermal stability and cleanliness. The versatility of this family is best understood when one considers that multiple acids are usually co-esterified with the polyol alcohol allowing the ester engineer to control multiple properties in a single ester. Indeed single acids are rarely used in polyol esters because of the enchanced properties that can be obtained through co-esterification. Polyol esters can extend the high temperature operating range of a lubricant by as much as 50 - 100°C due to their superior stability and low volatility. They are also renowned for their film strength and increased lubricity which is useful in reducing energy consumption in many applications. The only downside of polyol esters compared to diesters is their higher price tag, generally 20 - 70+% higher on a wholesale basis. The major application for polyol esters is jet engine lubricants where they have been used exclusively for more than 40 years. In this application, the oil is expected to flow at -65°C, pump readily at -40°C, and withstand sump temperature over 200°C with drain intervals measured in years. Only polyol esters have been found to satisfy this demanding application and incorporating even small amounts of diesters or PAOs will cause the lubricant to fail vital specifications.Polyol esters are also the ester of choice for blending with PAOs in passenger car motor oils. This change from lower cost diesters to polyols was driven primarily by the need for reduced fuel consumption and lower volatility in modern specifications. They are sometimes used in 2-cycle oils as well for the same reasons. In industrial markets polyol esters are used extensively in synthetic refrigeration lubricants due to their miscibility with non-chlorine refrigerants. They are also widely used in very high temperature operations such as industrial oven chains, tenter frames, stationary turbine engines, high temperature grease, fire resistant transformer coolants, fire resistant hydraulic fluids, and textile lubricants. In general, polyol esters represent the highest performance level available for high temperature applications at a reasonable price. Although they cost more than many other types of synthetics, the benefits often combine to make this chemistry the most cost effective in severe environment applications. The primary benefits include extended life, higher temperature operation, reduced maintenance and downtime, lower energy consumption, reduced smoke and disposal, and biodegradability. Other esters While diesters and polyol esters represent the most widely used ester families in synthetic lubrication, two other families are worth mentioning. These are monoesters and trimellitates. Monoesters are made by reacting monohydric alcohols with monobasic fatty acids creating a molecule with a single ester linkage and linear or branched alkyl groups. These products are generally very low in viscosity (usually under 2 cSt at 100°C) and exhibit extremely low pour points and high VIs. The presence of the ester linkage imparts polarity which helps to offset the high volatility expected with such small molecules. Hence, when compared to a hydrocarbon of equal molecular weight, a monoester will have a significantly higher flash point giving it a broader temperature range in use. Monoesters are used primarily for extremely cold applications such as in Arctic hydraulic oils and deep sea drilling. They can also be used in formulating automotive aftermarket additives to improve cold starting. Trimellitates are aromatic triesters which are similar to the phthalates described under diesters but with a third ester linkage. By taking on three alcohols, the trimellitates are significantly more viscous then the linear adipates or phthalates. Viscosities range from about 9 to 20 cSt at 100°C. Like phthalates, trimellitates have a low viscosity index and poor biodegradability with a price range between adipates and polyols. Trimellitates are generally used where high viscosity is needed as in gear lubricants, chain lubricants, and grease. Summary Esters are a broad and diverse family of synthetic lubricant basestocks which can be custom designed to meet specific physical and performance properties. The inherent polarity of esters improves their performance in lubrication by reducing volatility, increasing lubricity, providing cleaner operation, and making the products biodegradable. A wide range of available raw materials allow an ester designer the ability to optimize a product over a wide range of variables in order to maximize the performance and value to the client. They may be used alone in very high temperature applications for optimum performance or blended with PAOs or other synthetic basestocks where their complementary properties improve the balance of the finished lubricant. Esters have been used in synthetic lubricants for more than 60 years and continue to grow as the drive for efficiency make operating environments more severe. Because of the complexity involved in the designing, selecting, and blending of an ester basestock, the choice of the optimum ester should be left to a qualified ester engineer who can better balance the desired properties.
  4. If you are not really interested in knowing about oil and just want to know what oil is best for your car, here is a quick reference guide for Motul engine oils.
  5. Oil Groups were created to separate the different qualities of lubricants being manufactured around the world. These Groups are basically different categories of the refinement processes used to develop the primary liquid before any additives are used. The Groups are: Group I - Crude oil, totally mineral base, simple refining method. Still contains waxes and other contaminants. Group II - Crude oil again, but more advance refining methods to improve its qualities. A very small percentage of wax remaining. Group III - This group is an advanced Group II; It has all of its waxes and contaminants removed and been further refined by a process called 'Hydrocracking' (Commonly called Synthetic) Group IV - POA or Poly-Alpha Olefines. This is not Crude oil based and is a true synthetic. Group V - Esters. There are countless Esters available, all with similar qualities. This group is the most advanced method of creating and refining synthetic lubricant stocks. Pictures make it so much easier to understand. The Neopoly Esters shown are an example of 2 different processes for the one material and the gain that can be achieved. The higher up the group is, the more expensive it is to produce. If you are buying synthetic oil and the oil you are getting is marked HC/MC or VHVI/XHVI then it is a Group III "Synthetic" and not a true Group IV or V Synthetic. It really does make all the difference.
  6. Many have asked, 'What base stock does Motul use; Group 3, 4 or 5?' Hopefully this will help answer that question. Groups 1 to 3 are crude oil base stock. Groups 4 and 5 are synthetic base stock and are totally man made. These groups are able to be blended which is why you get semi-synthetic. Technically speaking, the term synthetic has been over-used to the point where a 30% blend can be termed Synthetic, not semi-synthetic. Depending on the Motul product, it will be either of the Groups 3,4 or 5. 300V for example, is a pure double ester synthetic, group 5 base stock. Double ester synthetic is the ultimate in lubricants today. 4100 Turbolight on the other hand comes branded Technosynthese, which by EU standards is semi-synthetic, but by Australian standards, is considered a full synthetic. To call it group 3.5 wouldn’t do it justice, so for all good purposes, let’s consider it a Group 4. Motul also has mineral oil to cater for vintage cars. There is the single grade mineral for pre-1950’s and multigrade for post-1950’s. This oil is a group 3. Motul has a number of manufacturer approvals for various lines of products. Keep in mind that a recommended oil is not the same as approved. In most cases, if an oil is recommended then it might only just meet the standards for that make and model. An approved engine oil though, meets and exceeds those standards based on outcomes of thorough testing regardless of its base stock group. Whether you end up getting Motul or not, try your best to get an approved engine oil or one that exceeds the manufacturers standards to ensure you get the best protection for your engine.
  7. Motul introduction

    Motul understands that the subject of oil and lubricants can be difficult at times, especially when the longevity and performance of your pride and joy relies on the right products. Choosing the wrong products could lead to an expensive repair bill. Each month a technical paper will be posted to address some of these issues you face when it comes to choosing the right product. To begin, here's an outline of Motul's history: Established in New York over 150 years ago in 1853, Swan & Finch specialised in the production of high quality lubricants. With the strong national presence in the USA, Swan & Finch expanded its lubricant business to Europe where in 1932, the company moved its entire operation to France and later became known as Motul. Today from the Paris headquarters in France the MOTUL line of premium performance products are sold in some 65 different countries. Focused on improving the reliability and performance of lubricants, Motul dramatically altered the lubrication industry by being Pioneers to set forth and shape the history of motor lubricants. 1953 - Motul produced the World’s first Multigrade Oil. 1966 - Motul produced the World’s first Semi Synthetic oil 1971 - Motul produced the World’s first 100% Synthetic oil with Ester. 2004 - Motul produced the World’s first Double Ester Technology – 300V Engine Oils. The full range of Motul Oil from Mineral to 100% Synthetic and 300V range is designed to be superior in its respective application. MOTUL has become a dominant presence in most International Motorsports due to their ability to produce oils to genuinely endure and protect during the toughest conditions in Motor Racing whilst providing Extra Horsepower! Maintaining this presence over many decades has come via a commitment to evolve side by side with the Engine Technology of today and tomorrow. The exact formulations used by these Motorsport Champions can be purchased from your local Australian Motorcycle Dealer. The World’s Top Motorcycle Racing teams and most discriminating enthusiasts agree on one thing – MOTUL, and for the right reasons. Armed with their technical partnerships with the most prestigious manufactures in Europe (BMW, Porsche, VW), while testing their best products in the most extreme competitive conditions (F1, Cart, WRC and more), Motul has developed a line of oils to meet your every need. A competition lubricant for all Basing itself on the experience gained with the first semi-synthetic lubricant for cars, Motul Century 2100 launched already in 1966, Motul created a stir in 1971 by developing a 100% synthetic lubricant made from esters of vegetal origin and drawing on aeronautical technology. As a tribute to the 300 victories obtained by the brand at that date, this revolutionary lubricant was called '300V'. To demonstrate the validity of this innovation, Motul participated at the highest competition level in Formula 1 with the teams Frank Williams-Motul in 1971 and BRM in 1974. At the same time, Motul engineers developed versions for 4-stroke motorcycle engines and also 2-stroke engines with Motul Century 300 2T. As early as 1977 Takazumi Katayama won the supreme title in the 350cc World Championship. A symbol was born! No less than 6 viscosity grades of the 300V Motorsport Line are now available, covering a wide range of race conditions and thus allowing the performances of each engine to be optimised in terms of the expected result, whether it be a matter of the type of race, distance, engine fuel dilution, operating temperatures or else other specific parameters. Here is a video of the history of Motul: http://www.youtube.com/watch?v=_7-wKVuh4RI&feature=player_embedded For more technical info visit : http://www.motul.fr/au/en